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Abstract
Most Central African rainforests are characterized by a remarkable abundance of 
light-demanding canopy species: long-lived pioneers (LLP) and non-pioneer light de-
manders (NPLD). A popular explanation is that these forests are still recovering from 
intense slash-and-burn farming activities, which abruptly ended in the 19th century. 
This “human disturbance” hypothesis has never been tested against spatial distribu-
tion patterns of these light demanders. Here, we focus on the 28 most abundant LLP 
and NPLD from 250 one-ha plots distributed along eight parallel transects (~50 km) 
in the Yangambi forest. Four species of short-lived pioneers (SLP) and a single abun-
dant shade-tolerant species (Gilbertiodendron dewevrei) were used as reference be-
cause they are known to be strongly aggregated in recently disturbed patches (SLP) 
or along watercourses (G. dewevrei). Results show that SLP species are strongly ag-
gregated with clear spatial autocorrelation of their diameter. This confirms that they 
colonized the patch following a one-time disturbance event. In contrast, LLP and 
NPLD species have random or weakly aggregated distribution, mostly without spatial 
autocorrelation of their diameter. This does not unambiguously confirm the “human 
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1  |  INTRODUC TION

The spatial organization of plant species can be used to trace the 
imprint of past events, certain ecological processes, and mecha-
nisms that maintain species coexistence (Fibich et al., 2016; Hardy 
& Sonké, 2004; Lan et al., 2012). When considering the spatial dis-
tribution of individuals of a single species, three spatial patterns 
are known in nature: random, regular, and aggregated (Puig, 2001; 
Réjou-Méchain et al., 2011). Understanding links between these 
distribution patterns and their drivers is a central issue in plant pop-
ulation and community ecology (Fibich et al., 2016). Distribution 
patterns of tree species in a forest are regulated by very different 
factors (Figure 1). First, they are regulated by dispersion constraints 
(dispersal modes). Autochoric species tend to be more clustered at 
small spatial scales than anemochoric or zoochoric species (Kumba 
et al., 2013; Meunier et al., 2015). Second, biotic factors can de-
termine spatial patterns of trees. Positive interactions (facilitation) 

between conspecific trees favor spatial aggregation, while nega-
tive interactions (e.g., competition, share of natural enemies) favor 
a regular spatial distribution (Boulangeat et al., 2012; De Araújo 
et al., 2014; Lortie et al., 2004). Third, distribution patterns can be 
regulated by resource availability so that aggregation results from 
environmental filtering in a heterogeneous landscape. For example, 
certain species aggregate in proximity to waterways or on certain 
soils (Condit et al., 2013; Enoki & Abe, 2004; John et al., 2007; 
Kearsley et al., 2017; Ripley, 1987a). Finally, disturbances create the 
conditions for a new succession of species, favoring the aggregation 
of pioneer species, a process where light availability is a key filtering 
factor as described hereafter.

In closed-canopy tropical forests, light is an important resource 
affecting the spatial distribution of tree species. Species behave dif-
ferently with respect to light availability and can be broadly divided 
into four regeneration guilds (Hawthorne, 1995): short-lived pioneer 
species (SLP), long-lived pioneer species (LLP), non-pioneer light-
demanding species (NPLD), and shade-tolerant species (STS) (Biwolé 
et al., 2015; Bourland et al., 2012; Meunier et al., 2015; Puig, 2001). 
Over the course of forest succession, which typically covers several 
centuries in tropical rainforests, these regeneration guilds follow 
one another chronologically, starting with SLP, then LLP, NPLD, and 
finally STS (Chazdon, 2008; Puig, 2001). Their relative abundances 
are therefore often used as a “forest succession clock” (Puig, 2001).

Current knowledge on the spatial distribution of tropical tree 
species and underlying factors are mostly based on patterns ob-
served in the Amazon and Southeast Asia (e.g., Baraloto & Couteron, 
2010; Barberis et al., 2002; John et al., 2007; Jones et al., 2006; 
Oliveira-Filho et al., 1994; Potts et al., 2012; Tuomisto et al., 2003; 
Valencia et al., 2004; Vormisto et al., 2004). In contrast, very little 
information is available on the spatial patterns of species distribu-
tion in Central Africa, except a few studies centered on the effects 
of dispersion and habitat heterogeneity (e.g., Hardy & Sonké, 2004; 
Réjou-Méchain et al., 2011).

disturbance” hypothesis. Alternatively, their abundance might be explained by their 
deciduousness, which gave them a competitive advantage during long-term drying of 
the late Holocene. Additionally, a canonical correspondence analysis showed that the 
observed LLP and NPLD distributions are not explained by environmental variables, 
strongly contrasting with the results for the reference species G. dewevrei, which is 
clearly aggregated along watercourses. We conclude that the abundance of LLP and 
NPLD species in Yangambi cannot be unambiguously attributed to past human dis-
turbances or environmental variables. An alternative explanation is that present-day 
forest composition is a result of adaptation to late-Holocene drying. However, results 
are inconclusive and additional data are needed to confirm this alternative hypothesis.

K E Y W O R D S
African forest ecology, forest composition, light-demanding species, spatial analysis, Yangambi 
biosphere reserve

F I G U R E  1  Simplified model showing the drivers of spatial 
pattern of trees
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Yet, Central African rainforests are characterized by mysteri-
ously odd diversity and species dominance patterns: In many Central 
African tropical rainforests, light-demanding species (LLP and NPLD) 
dominate the canopy (Bourland et al., 2015; Morin-Rivat et al., 2017; 
Poorter et al., 1996; Van Gemerden et al., 2003). It has been noted 
that this phenomenon is less prominent in other tropical forest re-
gions, which is one of the reasons why African tropical forests are 
often labeled “the odd man out” (Richards, 1952; Parmentier et al., 
2007; Poorter et al., 1996). While certain studies have attempted to 
explain this feature through analysis of forest structure and diame-
ter distributions, no study focused on spatial distribution patterns of 
these light demanders.

Therefore, the objectives of our study are to: (i) analyze the 
current spatial distribution of light-demanding species by combin-
ing information on individual species, regeneration guild, and stem 
size and (ii) discuss the relative role of different factors determining 
the observed spatial pattern, by considering three hypotheses (see 
Table 1 and Methods).

2  |  METHODS

2.1  |  Study area

The study was conducted in the Yangambi Biosphere Reserve 
(YBR) located in the province of Tshopo in the northeast of 
Democratic Republic of Congo (DRC), between 0°49′─0°51′N and 
24°29′─24°35′E (Figure 2). In general, four types of terra firme forest 
are found in YBR: (i) young secondary forest dominated by pioneer 
species such as Musanga cecropioides R. Br. ex Tedlie and Macaranga 

monandra Müll. Arg., (ii) semi-deciduous mixed forest dominated by 
long-lived pioneer species such as Pericopsis elata (Harms) Meeuwen, 
(iii) semi-deciduous mixed forest dominated by shade-tolerant spe-
cies such as Scorodophloeus zenkeri Harms, and finally (iv) evergreen 
monodominant forests dominated by Gilbertiodendron dewevrei (De 
Wild.) J. Léonard or Brachystegia laurentii (De Wild.) Louis ex Hoyle 
(Toirambe, 2011). The Yangambi region has the Af climate accord-
ing to the Köppen classification with a slightly marked dry season 
(Beguin, 1958). The average annual precipitation is 1837 mm, and 
mean annual temperature is 25.1°C (Kombele, 2004).

2.2  |  Sampling design and data collection

The study was conducted around the Moni River where we es-
tablished forest inventory plots along permanent transects ori-
ented perpendicular to the watercourses and contours. Eight 5- to 
8-km-long parallel transects, east-west oriented and separated by 
~450 m, were opened in the forest (Figure 2). These transects to-
gether cover a total length of ~50 km. Along the transects, botani-
cal surveys were carried out in plots of 50-m width (25 m on the 
two sides of the transects’ baseline) and 200  m long centered on 
the transect baseline. Each plot was divided into eight rectangular 
subplots (25 m × 50 m) to facilitate the survey. In total, 2005 sub-
plots were established, covering a total area of 250,625 ha. This area 
represents a sampling rate of 10.66%.

The target species measured in the plots were the 32 of the most 
common light-demanding species in YBR (Kearsley et al., 2013). Four 
of these species are short-lived pioneers (SLP), 13 are long-lived 
pioneers (LLP), and 15 are non-pioneer light demanders (NPLD) 

TA B L E  1  Main hypotheses, null models, and predictions

Hypotheses Null models and tests Prediction

H1—The present-day spatial pattern of light-
demanding species or their regeneration 
guilds observed in the forest is a legacy 
of human disturbances that created large 
canopy gaps.

“Spatial random distribution,” tested with 
the pair correlation function (g)

“dbh not spatially autocorrelated,” tested 
with Moran's index (I)

We would expect the light-demanding species 
to be aggregated. Additionally, we would 
expect a positive and significant spatial 
autocorrelation of the dbh before the 
development of the local size hierarchy 
that is attributable to competition over 
time. As such, we expect rejection of the 
null models: g(r) > 1 and I(c) > 0

H2—The present-day spatial pattern of light-
demanding species or their regeneration 
guilds observed in the forest is a legacy of 
adaptation to an increasingly drier climate 
over the last millennia because these species 
also have the competitive advantage of 
being deciduous (with deciduousness being a 
drought-avoidance strategy)

“Complete spatial random distribution,” 
tested with the pair correlation 
function (g).

“dbh not spatially autocorrelated,” tested 
with Moran's index (I)

We would expect the light-demanding 
species to be deciduous. We would 
expect the light-demanding species to be 
randomly distributed in the forest (i.e., 
not aggregated) and to be not spatially 
autocorrelated. As such, we expect 
acceptance of the null models: g(r) ≈ 1 and 
I(c) ≈ 0

H3—Abiotic filtering due to environmental 
heterogeneity (e.g., terrain altitude, slope, 
distance from waterways, and topography) 
explains a large portion of the variability in 
the spatial distribution of tree individuals 
considered at the species or regeneration 
guild level

“Species or regeneration guilds are 
independent of environmental 
variables,” tested with a canonical 
correspondence analysis (CCA)

Because light demanders are fast-growing 
species, they should have a resource 
demand and therefore a preference 
for microhabitats. If this is the case, 
we would expect these species or 
regeneration guilds to be related to certain 
environmental variables
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(see list and details in Table S1). For comparison, we also targeted 
Gilbertiodendron dewevrei, an extremely aggregative shade-tolerant 
species, for which its aggregation is probably due to a strong prefer-
ence for proximity to waterways (Kearsley et al., 2017). As such, the 
distribution pattern of this highly aggregated species will serve as a 
reference to evaluate distribution patterns of the light-demanding 
species.

The botanical surveys were carried out according to conventional 
forest inventory methods (Condit, 1998; Dallmeier, 1992; Phillips 
et al., 2009; Picard, 2007). In each subplot, all trees of the target 
species with a diameter at breast height (dbh at 1.30 m) ≥10 cm were 
identified, mapped (x- and y-coordinates), and measured for their 
dbh. For trees with buttresses or any deformations at 1.30 m, mea-
suring point was taken about 50 cm above the deformation. Trees 
from non-target species were solely counted.

Data on environmental variables were recorded at subplot level. 
Slope and topography were observed directly in the field. The slope 
was measured in percentage with a Suunto clinometer (Vormisto 
et al., 2000). For the topography, four categories were considered: 
flat surface, slope, crest, and shallow. Altitude and the distance to 
watercourses were derived from different maps of the study area 
and based on the geographical coordinates of the center of each 
subplot.

2.3  |  Statistical analysis

Statistical analyses were carried out in R software, version R 3.6.1 (R 
Core Team, 2019). Analyses were performed at species level and at 
regeneration guild level. For the species-level analysis, only species 
with a minimum of 50 individuals in the database (i.e., 15 species) 
were considered to ensure the robustness of the analysis, and the 
other species were excluded. For the guild-level analysis, we stand-
ardized the diameter data to the mean of each species to avoid blur-
ring the results due to interspecific differences in growth rates and 
maximum diameter.

Several analyses were performed. First, tree spatial pattern was 
assessed using tree x- and y-coordinates considering a point pat-
tern process based on the pair correlation function (PCF; Stoyan & 
Stoyan, 1994). This analysis was intended to measure whether tree 
spatial pattern is random, regular, or aggregative, and at which spa-
tial scales. Second, Moran's I spatial autocorrelation index (Moran, 
1950) was calculated on dbh to assess the spatial structure of tree 
size. This analysis allowed us to test whether cohorts of individuals 
of similar size established in the same geographical location, as ex-
pected after a local disturbance event (H1—human disturbance). If 
this occurs, we expect a positive Moran I index at short spatial dis-
tance. Finally, a canonical correspondence analysis (CCA; Ter Braak 

F I G U R E  2  Localization of Moni River 50-m-wide permanent transects
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1987) was performed to examine to what extent variables charac-
terizing habitat heterogeneity determine the plant community struc-
ture in a multivariate framework.

2.3.1  |  Pair correlation function (PCF)

The PCF was used to describe the spatial distribution of individuals 
of each species and regeneration guild. It is defined as:

where r is the distance between individuals, and K'(r) is the derivative 
of Ripley's function K(r) (Haase, 1995; Ripley, 1987b). The univariate 
PCF measures the ratio of the expected density of points within a 
radius r to the total number of points per unit area (Velázquez et al., 
2014). The function indicates whether the spatial pattern is random, 
aggregated, or regular. To this end, the deviation of the observed pat-
tern from the null hypothesis of complete spatial random distribution 
(CSR) was tested by comparing the observed distribution function with 
the confidence envelope generated by 100 Monte Carlo simulations 
of the null model (Olagoke et al., 2013). When g(r) > 1 (i.e., observed 
distribution function above the upper limit of the confidence envelop), 
the spatial distribution is considered aggregated. When g(r) = 1 (i.e., 
observed distribution function within the confidence envelop), the 
spatial distribution is considered to be random, whereas g(r) < 1 (i.e., 
observed distribution function under the lower limit of the confidence 
envelop) indicates regular spatial distribution (Challis et al., 2016; 
Law et al., 2009). This analysis was done in the R package “spatstat” 
(Baddeley and Turner, 2005).

2.3.2  |  Moran's I index

Moran's I index is a measure of spatial autocorrelation of a given 
attribute. Basically, this index assesses the level of similarity or dis-
similarity of the concerned attribute between individuals separated 
by a given distance interval, c (Fibich et al., 2016; de Frutos et al., 
2007). Moran's I index was calculated based on dbh. When I(c) > 0, 
individuals separated by a distance interval c are spatially autocorre-
lated. This means that they have more similar diameters than random 
individuals, whereas negative values indicate the opposite trend. 
Zero value suggests the absence of spatial autocorrelation, that is, 
substantial variation in dbh at a local scale (de Frutos et al., 2007). 
Results were displayed as correlogram I(c). Package “ncf” (Bjornstad 
and Cai, 2020) was used to calculate this index. The Mantel test was 
further used to test the significance of calculated Moran's index 
(Potts et al., 2012; Vormisto et al., 2000). The Moran index for indi-
viduals of a species or of a regeneration guild is given by:

where N is the total number of trees, dbhi and dbhj are the respective 
dbh of trees i and j, wij = 1 if the geographical distance between i and 
j is included in the distance interval c; otherwise, wij = 0, and dbh is 
the mean dbh over all trees. The distance intervals were defined as 
non-overlapping ranges with upper distances equal to 100, 200, 300, 
up to 4000 m.

To assess whether two different species had spatially correlated 
dbh values, we developed a variant of Moran's I for intertype 
comparisons:

where N1 and N2 are the total numbers of trees of, respectively, 
species 1 and 2, dbh1 and dbh2 are their respective mean dbh, 
and σ1, and σ2 are the species-specific standard deviations of their 
dbh. The same distance intervals were used as for within-species 
Moran's I.

2.3.3  |  Canonical correspondence analysis (CCA)

Canonical correspondence analysis (CCA) is a constrained multivari-
ate method that allows to quantify the part of the variability in the 
plant community structure that is actually related to environmen-
tal variables (Ter Braak, 1987; Ter Braak and Verdonschot, 1995; 
Parmentier et al., 2005). Here, three data matrices were prepared 
at the subplot level. The first (matrix 1) concerned the data of en-
vironmental variables (distance from watercourses, altitude, slope, 
and topography). The other two matrices contained data on tree 
abundance for regeneration guild (matrix 2) and for species with at 
least 50 individuals (matrix 3). The CCA was applied first on matri-
ces 1 and 2, and then on matrices 1 and 3. The full model, that is, 
the one with all environmental variables, was constructed, and then, 
the most parsimonious model (with the minimum possible variables) 
was selected using backward elimination based on AIC. The final 
model was used to construct the two-dimensional ordination plot. 
Permutation tests (999 simulations) were carried out to evaluate the 
significance of the final model, and the marginal effect of each en-
vironmental variable selected in the final model (Makarenkov and 
Legendre, 2002). The CCA was carried out in the package "vegan" 
of the R software.

2.4  |  Hypotheses

The main hypotheses, null models, and predictions are summarized 
in Table 1.

The first hypothesis (hereafter called “H1—human disturbance”) 
suggests that the present-day dominance of light-demanding spe-
cies in African forests is a legacy of past human activity (Bourland 
et al., 2015; Morin-Rivat et al., 2017; Van Gemerden et al., 2003). 
This hypothesis is based on the assumption that the conditions 
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needed for recruitment of these light-demanding canopy species 
do not correspond to those occurring in natural gap phase dynam-
ics. Many of these large tree species recruit poorly in small (natu-
ral) gaps but need large-scale clearings through disturbances such 
as hurricanes, river dynamics, or volcanic activity (Espírito-Santo 
et al., 2014; Marra et al., 2014; Van Gemerden et al., 2003). In large 
parts of Central Africa, these natural disturbances are rare. Hence, 
an increasingly popular hypothesis is that large-scale clearings 
were created by humans, for example, through slash-and-burn 
farming (Bourland et al., 2015). This farming technique gained 
importance throughout Central Africa during the last 1000 years 
(Tovar et al., 2014). Slash-and-burn farmlands were sufficiently 
large for the establishment of light-demanding trees. Recent re-
search suggested that since 1885, slash-and-burn activities de-
clined substantially, both in intensity and in geographical extent, 
because colonial administrations concentrated people and villages 
along primary communication axes (Morin-Rivat et al., 2017). 
Therefore, many forest areas in Central Africa were “abandoned” 
and the former farmland patches were left to forest succession. 
As such, former farmland patches would today be forests of 100–
200 years old, which corresponds to the last stage of forest suc-
cession, when long-lived, light-demanding pioneer trees are being 
replaced by shade-tolerant species (Chazdon, 2008).

The second hypothesis (hereafter called “H2—drought adapta-
tion”) suggests that the present-day dominance of light-demanding 
species in Central African forests is a legacy of adaptation to a drier 
climate (Parmentier et al., 2007). Central African tropical forests 
mostly receive <2000  mm  yr−1, which is substantially drier than 
Asian and South American forests (Philippon et al., 2019). Therefore, 
they are more dominated by deciduous species (Parmentier 
et al., 2007) because deciduousness is a drought-avoidance strategy 
(Enquist and Enquist, 2011; Fauset et al., 2012; Vico et al., 2017). 
Furthermore, deciduousness is often associated with fast-growing 
light-demanding canopy specialists because larger trees are more 
vulnerable to drought stress (Bennett et al., 2015; Hubau et al., 
2019). African forests experienced a long-term drying trend since 
the mid-Holocene (since ~5000 years BP) as attested in marine and 
freshwater records for West Africa (Weldeab et al., 2007), the Congo 
Basin (Schefuß et al., 2005), and East Africa (Russell and Johnson, 
2005). Therefore, the present-day abundance of light-demanding 
trees in Central Africa might be explained by their deciduousness, 
which gave them a competitive advantage during late-Holocene 
long-term drying.

The third hypothesis (hereafter called “H3—environmental fil-
tering”) suggests that abiotic filtering due to environmental het-
erogeneity (e.g., terrain altitude, slope, distance from waterways, 
and topography) explains a large portion of the variability in the 
spatial distribution of certain tree species or perhaps entire re-
generation guilds (Hardy & Sonké, 2004; Réjou-Méchain et al., 
2011). Because light-demanding species are fast-growing species, 
they have large resource demands. Therefore, they might prefer 
microhabitats that are rich in resources such as water, soil type, 
or nutrients.

2.5  |  Predictions

If H1 (human disturbance) is true, past slash-and-burn activities 
would have created a patchwork of regenerating forests causing an 
aggregated distribution of light-demanding species. We would then 
expect a pair correlation function that rejects the null model that 
the spatial distribution is completely random (g(r)  >  1 for small r; 
Table 1), in particular for the SLP guild if the disturbance is recent 
and the LLP (and possibly the NPLD) guild if the disturbance is an-
cient. Furthermore, we would expect Moran's index that rejects the 
null hypothesis that the dbh distribution is not spatially autocorre-
lated (I(c) > 0) because trees that settled at the same time in a gap 
created by a disturbance should have more or less similar diameters.

If H2 (drought adaptation) is true, the abundance of light-
demanding species would be a legacy of drought adaptation rather 
than recurrent disturbances. If no other processes favor their aggre-
gation (e.g., habitat filtering, limited dispersal), we would expect a 
pair correlation function showing a completely random spatial dis-
tribution (g(r) ≈ 1; Table 1). Furthermore, we would expect Moran's 
index that retains the null hypothesis that the dbh distribution is not 
spatially autocorrelated (I(c) ≈ 0). We expect this because if the spe-
cies composition is a legacy of drought adaptation, this would have 
happened over a very long-time window (thousands of years), giving 
ample time for the dbh distribution to diversify.

If H3 (environmental filtering) is true for a certain species or 
guild, we would expect a strong relation with a certain environmental 
variable in the canonical correspondence analysis (CCA). This would 
reject the null hypothesis that species or regeneration guilds are in-
dependent of environmental variables. In addition, we would expect 
an aggregated pattern (g(r) > 1) but no spatial autocorrelation (I(c) ≈ 0) 
because individuals of these species would aggregate in areas with 
favorable environmental conditions, and have done so for relatively 
long-time windows, allowing the dbh distribution to diversify.

3  |  RESULTS

3.1  |  Overview of the data

A total of 84678 trees were registered in all transects. Our target 
species represented 8.88% of this total. The SLP guild had 834 trees 
(3.33 trees ha−1), LLP 800 trees (3.19 trees ha−1), NPLD 4694 trees 
(18.73 trees ha−1), and G. dewevrei 1195 trees (4.77 trees ha−1). More 
details and descriptive statistics of dbh for these species are pre-
sented in Table S2.

3.2  |  Spatial pattern of species and 
regeneration guilds

Spatial pattern analysis at the guild level revealed a particularly 
strong aggregated pattern (g  >  1 at short distances) for the SLP 
and STS (G. dewevrei) guilds, extending up to 590 m for the SLP and 
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760 m for the STS (Figure 3). For these guilds, the density of trees 
at 10 m of existing trees was 15–17 times higher than the average 
tree density (g(r = 10 m) ≈ 15 to 17, Figure 3). Trees of the NPLD guild 
also formed aggregates up to 800 m but with rather low g(r) values 
(g(r = 10 m) ≈ 1.6, Figure 3) as compared to SLP and STS. Trees of the 
LLP guild had g(r) values close to 1 and generally did not form aggre-
gates. If they did form aggregates, the radius was very small, ranging 
from 20 to 120 m (Figure 3).

At the species level, we noted great differences. Within the SLP 
species, M. cecropioides and M. monandra display strongly aggregated 
spatial distribution (g(r) up to 30) up to 660 and 230 m (Figure 4b,a). 
Most of the species in the LLP guild (Figure 4f,h,m) had random distribu-
tion (g(r) ≈ 1) except P. elata, which had a moderately aggregated distri-
bution (g(r) up to 2.2), but only up to 140 m (Figure 4j). The NPLD guild is 
dominated by species showing random distribution except P. macrocar-
pus, C. tessmannii, C. mildbraedii, and P. angolensis, which had moderately 
aggregated distribution (g(r) up to 3.5) up to 810, 590, 740, and 60 m, 
respectively. G. dewevrei had a strongly aggregated distribution (g(r) up 
to 17) up to 760 m (Figure 4c). It should be noted that the sample size 
strongly conditioned the width of the confidence envelopes around 
the g(r) functions (Figure 4) and hence the power to detect significant 
aggregation pattern. For example, it is possible that Entandrophragma 
utile (N = 61) is actually more aggregated than Petersianthus macrocarpus 
(N = 2407) in the sense that its g(r) function tends to be higher at short 
distances (r < 500 m), but the g(r) function was clearly outside of the 
confidence envelope only for the second species (Figure 4c,k).

3.3  |  Spatial autocorrelation of DBH

Species that were not significantly aggregated did not show any spatial 
autocorrelation of their dbh. For the eight species with high or moder-
ately aggregated distribution (see Section 3.2), Moran's I values show 
that only five had a positive and significant spatial autocorrelation of 
dbh (Figure 5), indicating that spatially close individuals have similar 
dbh in these species. The autocorrelation extended up to 250 m for 
G. dewevrei, 450 m for M. cecropioides, 650 m for M. monandra, 250 m 
for C.  tessmannii, and between 150 and 250  m for P.  macrocarpus 
(Figure 5). However, I(c) for G. dewevrei ranges only up to 0.04, while 
for the SLP, it is up to 0.2. Only P. angolensis and C. mildbraedii reach 
I(c) values comparable to the SLPs. No spatial correlation of dbh was 
observed between species (Figure S1), except between the two most 
abundant SLP species, M. cecropioides and M. monandra, showing sig-
nificant positive spatial autocorrelation up to 650 m (Figure 6). This in-
dicates that spatially close individuals of these two species often have 
dbh deviating in the same direction from the respective species means.

3.4  |  Influence of environmental variables on local 
species assemblages

Results of the CCA revealed that the altitude and the distance from 
watercourses were the main explanatory variables in the ordination 

at the species level, whereas the slope and topography in addition 
to altitude and the distance from watercourses were important 
for the ordination of species’ guilds (Table 2). Environmental vari-
ables explain 23.73% of the variation in the ordination of guilds, 
and altitude was by far the most important variable (93.97% of the 
variance explained by environmental variables). Regarding species, 
environmental variables explain only 8.47% of the total variation 
in the ordination of species, and altitude was also the most impor-
tant (90.25% of the variance explained by environmental variables) 
(Table 2).

The CCA showed that the regeneration guilds were grouped 
into three categories: (i) the G. dewevrei (STS) was located in low 
altitude environment, close to watercourses and characterized by 
shallows; (ii) the LLP and NPLD guilds were located in the upland 
environment and high altitude; and (iii) the SLP guild was linked to 
a sloping environment (Figure 7a). The ordination of species re-
vealed two main groups: the group of G. dewevrei that is located 
in low altitude environment and close to watercourses; and the 
group of LLP and NPLD guilds species that is located in the upland 
environment and high altitude (Figure 7b). However, it should be 
noted that most LLP and NPLD species or LLP and NPLD guilds are 
close to the biplot origin.

Removal of G. dewevrei from both analyses and keeping only the 
light-demanding species showed strong changes in the CCA results 
(Figure 7c,d). Slope, altitude, and distance from watercourses are 
now the main explanatory variables for species ordination, whereas 
only the first two are now the main explanatory variables for the 
ordination of regeneration guilds. Environmental variables now ex-
plain only 2.1% of the variation in species ordination and 7.7% for 
regeneration of guilds. In both ordinations, altitude remains the most 
important variable (Table 2).

F I G U R E  3  Pair correlation function g(r) of individuals from each 
regeneration guild. The low aggregation of the NPLD guild has 
been highlighted as an inset where the scale of the vertical axis was 
readjusted
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FIGURE 4  Legend on next page
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4  |  DISCUSSION

Our study heavily draws on forest succession theory (also called 
sylvigenetic cycle theory). Hallé et al. (1978) explained that when 
the canopy opens following a disturbance, several phases of plant 

succession characterized by a turnover of the dominant regenera-
tion guilds follow one after the other before returning to the initial 
state of the forest. The canopy opening allows the entry of a large 
amount of light, which is a determining factor for the colonization 
and establishment of light-demanding species (Delcamp et al., 2008; 

F I G U R E  4  Intraspecific pair correlation function g(r) of individuals from different species. N refers to the sample size available. The 
dotted lines delimit the 95% interval expected under a random distribution of trees. Note that y-axis scales gradually diminish from top to 
bottom, with the top row containing the largest amplitude (g(r) between 0 and 30) and the bottom row containing the narrowest amplitude 
(g(r) between 0 and 1.6)

F I G U R E  5  Spatial autocorrelograms 
(Moran's I) for dbh of the species that 
are strongly or moderately aggregated 
(Figure 4). Filled symbols indicate values 
significantly departing from the 95% 
confidence envelopes, contrary to open 
symbols. The p-value refers to a Mantel 
test between the matrices of Iij values and 
ln(dij) values
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Marra et al., 2014; Puig, 2001). Based on this theory, a canopy open-
ing first favors the establishment of a large number of individuals of 
strongly regenerating short-lived pioneer species (i.e., the SLP guild), 
which are relatively quickly (i.e., after a few decades; Chazdon, 
2008) replaced by long-lived pioneers (LLP), then by non-pioneer 
light demanders (NPLD) and eventually, after hundreds of years, by 
shade-tolerant species (STS). This theory is applicable both on large-
scale openings and on small-scale openings. Large-scale openings 
typically occur in anthropogenic landscapes, where slash-and-burn 
activities create large gaps that are subsequently left to forest suc-
cession (Morin-Rivat et al., 2017; Van Gemerden et al., 2003). Small-
scale openings typically occur in old-growth tropical forests, where 
species composition is determined by natural gap phase dynamics. 
Both types of canopy openings have occurred frequently in the 
African rainforest, but the question is which of these has left a sig-
nificant imprint on present-day species composition?

Below, we discuss each of our hypotheses in light of the results 
obtained by our analysis. The first (H1—human disturbance) draws 
on a dominant influence of large-scale openings by human activities, 
which may have changed forest patches over relatively short times-
cales (hundreds of years). The second (H2—drought adaptation) draws 
on a dominant influence of small-scale openings and natural gap phase 
dynamics, which may have changed species composition of large parts 
of the African rainforest over relatively long timescales (thousands of 
years). Finally, we discuss other factors that may influence spatial dis-
tribution such as environmental filtering (H3) or dispersal mode.

4.1  |  H1—human disturbance hypothesis

Hypothesis 1 is based on the logic that after slash-and-burn ac-
tivities, SLP species regenerate abundantly and locally in patches 
so that they show spatial aggregation plus a cohort effect with 

positive and significant autocorrelation of dbh. The aggregated dis-
tribution and autocorrelation of dbh is expected to be more or less 
maintained over relatively short periods (i.e., 100–200 years). Our 
results show that this works well for the SLP regeneration guild (M. 
cecropioides and Macaranga spp.). SLP species had a much higher 
degree of aggregation and spatial autocorrelation than LLP, NPLD, 
and even STS (G. dewevrei). High spatial autocorrelation of the dbh 
of SLP species indicates a synchronization of their establishment 
across time in areas that have undergone recent disturbance, that 
is, in the past few decades. However, in this study, we test whether 
this hypothesis also works for old disturbances (i.e., >100  years 
ago), by focusing on the LLP (or even NPLD) guild. Apart from 
P. macrocarpus and C. tessmannii, species in these guilds showed no 
or little aggregation or spatial autocorrelation of their dbh, suggest-
ing that they are randomly distributed throughout the forest. Here, 
we discuss three possible scenarios that may explain this.

A first scenario is that the LLP and NPLD abundance in the canopy 
is indeed a legacy of past slash-and-burn activities, as H1 suggests, 
but that aggregation and spatial autocorrelation heavily decreased 
over time due to competition between neighboring tree individuals 
(Fibich et al., 2016; Suzuki et al., 2008). In this case, tree mortality, 
recruitment, and growth heterogeneity over time eventually erased 
traces of initial aggregation and spatial structure of dbh. In Asian 
forests, it has indeed been illustrated that the degree of aggrega-
tion decreases with competitive processes (Fibich et al., 2016). On a 
given site, the spatial distribution pattern is not static, but changes 
according to the plant succession stage (Felinks & Wiegand, 2008; 
Greig-Smith, 1952; Malkinson & Kadmon, 2007; Suzuki et al., 2008; 
Velázquez et al., 2014). Yet, an argument against this scenario is that 
it seems unlikely that aggregation and spatial autocorrelation almost 
entirely disappeared in the course of just more than 100 years.

A second scenario is that the LLP and NPLD abundance in the 
present-day canopy is indeed a legacy of past slash-and-burn ac-
tivities, but these activities were so intense and frequent that they 
affected the whole forest, rather than scattered patches. Recurring 
disturbance in previously disturbed forest creates spatial hetero-
geneity and blurs aggregated patterns. Yet, an argument against 
this scenario is that population numbers in Central Africa in the 
centuries preceding the colonial era were relatively low due to the 
Transatlantic slave trade (Lovejoy, 1989). This does not favor the sce-
nario of intense, recurring disturbance.

A third scenario is that the LLP and NPLD abundance in the 
present-day canopy is not a legacy of past slash-and-burn activities 
and that other factors are at stake (i.e., H2). We conclude that our 
results do not confirm H1 (human disturbance), but they also do not 
unambiguously falsify it, because traces of human activity patterns 
may have been erased over time.

4.2  |  H2—drought adaptation hypothesis

If not ancient disturbances, what else could explain the present-
day abundance of light-demanding species? Forest ecosystems 

F I G U R E  6  Spatial correlation of the dbh between SLP species 
pairs. Stippled lines delimit the 95% confidence envelopes under the 
null hypothesis that dbh are not spatially correlated between species
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are known to be resilient. When an ecosystem is faced with the 
constraints of a changing external environment, it evolves toward 
the most resistant state (Cropp and Gabric, 2002). African rainfor-
ests are much drier than, for example, South American rainforests 
(Parmentier et al., 2007). As such, we expect a higher abundance 
of drought-adapted species in African rainforests. Ignoring envi-
ronmental heterogeneity, we would expect that these species are 
randomly distributed throughout the African rainforest, as these 
relatively dry conditions occur everywhere. Our results seem 
to support this hypothesis. All of the LLP and NPLD species in 

our dataset are either deciduous or semi-deciduous except one 
(Pycnantus angolensis). In addition, most of the LLP and NPLD 
species are randomly distributed in the study site. Based on this 
combination of patterns, H2 could explain the presence and abun-
dance of these species in the study site given that deciduousness is 
known as a drought-avoidance strategy (Condit et al., 2000; Fauset 
et al., 2012; Vico et al., 2017). The forest would have responded to 
increasingly drier conditions over the last millennia by multiplying 
the number of individuals of deciduous or semi-deciduous species 
to the detriment of evergreen species. This scenario is supported 

df Chi-square F Pr(>F)
Proportion 
explained (%)

Regeneration guild including G. dewevrei (constrained ordination = 23.73%)

Model: Abundance ~ Slope + Distance.from.wetland + Altitude + Topography (df = 6, 
F = 94.89, p = .001)

Canonical axes

CCA1 1 0.410 562.26 0.001 98.59

CCA2 1 0.005 7.66 0.024 1.34

Environmental variables

Slope 1 0.002 2.84 0.040 1.64

Distance from 
wetland

1 0.002 3.42 0.031 1.98

Altitude 1 0.118 162.38 0.001 93.97

Topography 3 0.009 4.16 0.001 2.41

Regeneration guild excluding G. dewevrei (constrained ordination = 7.7%)

Canonical axes

CCA1 1 0.071 145.38 0.001 99.92

CCA2 1 0.00006 0.121 0.874 0.08

Environmental variables

Slope 1 0.002 4.13 0.026 3.10

Altitude 1 0.067 136.46 0.001 96.9

Species including G. dewevrei (constrained ordination = 8.47%)

Model: Abundance ~ Distance.from.wetland + Altitude (df = 2, F = 84.15, p = .001)

Canonical axes

CCA1 1 0.44 162.91 0.001 96.80

CCA2 1 0.01 5.39 0.001 3.20

Environmental variables

Distance from 
wetland

1 0.016 5.73 0.001 9.75

Altitude 1 0.145 53.05 0.001 90.25

Species excluding G. dewevrei (Constrained ordination = 2.1%)

Canonical axes

CCA1 1 0.08 30.72 0.001 81.56

CCA2 1 0.015 5.56 0.001 14.76

Environmental variables

Slope 1 0.007 2.67 0.002 13.80

Distance from 
wetland

1 0.013 4.94 0.001 25.70

Altitude 1 0.031 11.64 0.001 60.50

TA B L E  2  Comparison of different CCA 
models to explain the location of trees 
according to species or regeneration guild 
in relation to environmental variables
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by the fact that such shifts toward more deciduous individu-
als in the canopy are even observed during the last decades due 
to multidecadal drying trends in West Africa (Aguirre-Gutiérrez 
et al., 2020; Fauset et al., 2012) and in the Congo Basin (Zhou 
et al., 2014). As such, we argue that their deciduousness is perhaps 
more important to explain the dominance of light demanders in 
the African rainforest than the fact that they are light-demanding. 
Yet, the second hypothesis cannot be unambiguously accepted, 
considered that five out of 28 LLP and NPLD species are (weakly) 
aggregated. Nevertheless, H2 is a promising hypothesis for fur-
ther research. Particularly, paleobotanical research such as char-
coal analysis could provide valuable insights to test this hypothesis 
(Hubau et al., 2015).

4.3  |  H3—habitat heterogeneity hypothesis

The effect of habitat heterogeneity on spatial distribution was 
tested by the CCA. The results of the CCA showed overall that the 

inventoried species had affinities with certain environmental variables 
such as altitude and distance from watercourses. These affinities de-
creased significantly when G. dewevrei was removed from the analysis. 
Environmental variables then explained less than 5% of the spatial vari-
ation's abundance of light-demanding species and about 10% of that of 
entire LLP and NPLD regeneration guilds. Unexpectedly, the habitat 
heterogeneity does not locally influence the abundance and spatial or-
ganization of light-demanding species in the site (Getzin et al., 2008; 
Wiegand et al., 2007). On the contrary, the fact that the addition of 
G. dewevrei improves the share of variance explained by habitat het-
erogeneity shows some effect of this factor on its abundance. This is 
supported by the fact that individuals of this species are very often lo-
cated near watercourses and thus low relative altitude in the landscape 
(Kearsley et al., 2017). The observed low autocorrelation's dbh of this 
species may have a different explanation than that of light-demanding 
species. Indeed, individuals of this species interact to completely close 
the canopy and form a very thick litter so as to favor its regeneration 
to the detriment of those of other species (Kearsley et al., 2017; Torti 
et al., 2001). Thus, several seeds scattered at the same time around 

F I G U R E  7  Distribution of species and their regeneration guilds in the space defined by the first two axes derived in canonical 
correspondence analysis (CCA). (a) CCA ordination diagram of regeneration guilds. (b) CCA ordination diagram of species. (c) CCA ordination 
diagram of regeneration guilds without G. dewevrei. (d) CCA ordination diagram of species without G. dewevrei. Environmental variables 
are indicated by vectors; vector length indicates the relative weight of a given variable in the ordination, and the direction represented 
by the arrow indicates the correlation of that variable with each axis. The means of the environmental variables are at the origin (0.0); 
values above the mean of a given variable lie along its corresponding vector in the direction of the arrow, and values below the mean 
lie along the extension of the vector in the opposite direction. The species names are abbreviated as follows: Macmo = Macaranga 
monandra, Musce = Musanga cecropioides, Alsto = Alstonia boonei, Eryth = Erythrophleum suaveolens, Perie = Pericopsis elata, 
Pipta = Piptadeniastrum africanum, Cmild = Celtis mildbraedii, Ctess = Celtis tessmannii, Entan = Entandrophragma angolense, 
Entca = Entandrophragma candollei, Entut = Entandrophragma utile, Peter = Petersianthus macrocarpus, Ptero = Pterocarpus soyauxii, 
Pycna = Pycnanthus angolensis, and Gilbe = Gilbertiodendron dewevrei. The regeneration guild names are abbreviated as follows: 
SLP = short-lived pioneer, LLP = long-lived pioneer, NPLD = non-pioneer light-demander, and STS = shade-tolerant species. The sites are 
represented by gray dots
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the mother tree can develop together with more or less the same dbh. 
Consequently, habitat heterogeneity might be here, more determinant 
for the abundance and spatial organization of G. dewevrei than light-
demanding species.

4.4  |  Alternative explanation

There are a few factors other than human disturbance, drought ad-
aptation, or environmental filtering. In general, the dispersal mode of 
diaspores plays an important role in the spatial organization of indi-
vidual's forest species. It reflects the capacity of species to disperse 
their diaspores in space. The dispersal distance of diaspores is linked 
to the agents of dissemination (Kumba et al., 2013; Puig, 2001). The 
dispersed diaspores, while awaiting favorable conditions for the dor-
mancy breaking (Deval, 1967), first feed the soil seed bank. Fibich 
et al. (2016) attributed the aggregation of pioneers after cultivation 
to the dispersal factor. It is true that not all diaspores are dormant. 
Although they may begin to grow, their development is further de-
termined by conditions favorable to the growth of the species. For 
most of the light-demanding species that we inventoried, their dis-
persal is mainly ensured by animals and the wind (Meunier et al., 
2015). These modes of dispersal allow the dispersal of diaspores 
over large distances and without any particular spatial organization, 
which could favor an aggregated pattern of individuals. Thus, the 
role of the dispersal mode seems subsidiary in the case of the spa-
tial organization of light-demanding individuals. On the contrary, the 
diaspores of species with a low dispersal capacity are limited around 
mother plants, which a priori leads to the formation of aggregates 
(Kumba et al., 2013). This could justify the aggregation of G. dewevrei 
whose seeds are dispersed by autochory.

4.5  |  Limitation and future research

This study could not clearly identify the major factor of spatial or-
ganization of light-demanding species individuals. Our analysis of 
habitat heterogeneity was based on only a few variables including 
altitude, slope, and distance from watercourses. These variables 
are not the only ones that define the environment. Other variables 
such as soil properties could have provided additional insights in our 
results. However, it should be noted that there is a significant cor-
relation between soil properties and, for example, altitude (Charan 
et al., 2013; He et al., 2016; Saeed et al., 2014). Moreover, the sig-
nal of past disturbances could be identified by dendrochronological 
and anthracological data. This can be used to discriminate between 
the human disturbance hypothesis (H1) and the drought adapta-
tion hypothesis (H2). Furthermore, expanding the inventory to in-
clude more shade-tolerant species could shed light on differences in 
spatial patterns. Also, including evergreen species in the inventory 
would allow to test whether deciduous LLP and NPLD species differ 
from evergreen LLP and NPLD species in terms of spatial aggrega-
tion, which would allow to better test H2.

5  |  CONCLUSIONS

The aim of this study was to analyze the present-day spatial 
distribution model of light-demanding species in the Yangambi 
Biosphere Reserve (YBR) and to discuss the role of each factor 
in this spatial distribution. The pair correlation function revealed 
a high degree of aggregation and autocorrelation of dbh for SLP 
guild tree individuals. This spatial distribution has been associ-
ated with disturbances over the last decade. A difference in the 
distribution pattern was observed between LLP or NPLD guild 
species. The species spatial distribution and relationship are more 
dependent on the propagation characteristics and the mode of 
seed dispersal, reflecting the population regeneration processes, 
the interspecific and intraspecific competition level. No major 
factors were found for the spatial organization of these species. 
Our spatial approach therefore does not allow to unambiguously 
confirm or exclude the first two hypotheses, although our results 
seem to favor H2 (drought adaptation) because most species in 
the dataset seem to be randomly distributed in the forest, espe-
cially the LLP species. Concerning G. dewevrei, its individuals pre-
ferred environments near watercourses and low altitudes, and its 
mode of dispersal (autochory) favors to aggregation. Limited seed 
dispersal and habitat heterogeneity therefore would be major 
factors in its aggregation. Based on the comparison between the 
affinity degree of light-demanding species and the one of G. dew-
evrei with the environmental variables, we would exclude the 
third hypothesis for the light-demanding species. Finally, we think 
that further insights require a multidisciplinary approach combin-
ing data of soil properties, tree dating, anthracology, history, and 
repeated forest inventories to elucidate the major factors deter-
mining the spatial distribution of light-demanding species in our 
study site.
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